skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liebling, Steven L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using adiabatic point-particle black hole perturbation theory, we simulate plausible gravitational wave (GW) signatures in two exotic scenarios (i) where a small black hole is emitted by a larger one (‘black hole emission’) and (ii) where a small black hole is emitted by a larger one and subsequently absorbed back (‘black hole absorption’). While such scenarios are forbidden in general relativity (GR), alternative theories (such as certain quantum gravity scenarios obeying the weak gravity conjecture, white holes, and Hawking radiation) may allow them. By leveraging the phenomenology of black hole emission and absorption signals, we introduce straightforward modifications to existing gravitational waveform models to mimic gravitational radiation associated with these exotic events. We anticipate that these (incomplete but) initial simulations, coupled with the adjusted waveform models, will aid in the development of null tests for GR using GWs. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons , but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars . Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts. 
    more » « less
  3. Abstract The collision of a primordial black hole with a neutron star results in the black hole eventually consuming the entire neutron star. However, if the black hole is magnetically charged, and therefore stable against decay by Hawking radiation, the consequences can be quite different. Upon colliding with a neutron star, a magnetic black hole very rapidly comes to a stop. For large enough magnetic charge, we show that this collision can be detected as a sudden change in the rotation period of the neutron star, a glitch or anti-glitch.We argue that the magnetic primordial black hole, which then settles to the core of the neutron star, does not necessarily devour the entire neutron star; the system can instead reach a long-lived, quasi-stable equilibrium. Because the black hole is microscopic compared to the neutron star, most stellar properties remain unchanged compared to before the collision. However, the neutron star will heat up and its surface magnetic field could potentially change, both effects potentially observable. 
    more » « less
  4. Abstract We study sky maps and light curves of gamma-ray emission from neutron stars in compact binaries, and in isolation. We briefly review some gamma-ray emission models, and reproduce sky maps from a standard isolated pulsar in the Separatrix Layer model. We consider isolated pulsars with several variations of a dipole magnetic field, including superpositions, and predict their gamma-ray emission. Our results provide new heuristics on what can and cannot be inferred about the magnetic field configuration of pulsars from high-energy observations. We find that typical double-peak light curves can be produced by pulsars with significant multipole structure beyond a single dipole. For binary systems, we also present a simple approximation that is useful for rapid explorations of binary magnetic field structure. Finally, we predict the gamma-ray emission pattern from a compact black hole-neutron star binary moments before merger by applying the Separatrix Layer model to data simulated in full general relativity; we find that face-on observers receive little emission, equatorial observers see one broad peak, and more generic observers typically see two peaks. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)